
Don’t forget
materialized views

Stephanie Baltus
Sr. Software engineer

Agenda

About

A bit of theory

Concrete use case

Wrap-Up

1

2

3

4

About

Me

─ Loves cats, sneakers, sport

─ 11 years in data ecosystem
─ Consulting, Leboncoin, JobTeaser, ManoMano

─ Currently software engineer at Algolia

─ In love with PG since 2013

twitter : @steph_baltus
blog: honest.engineering

Algolia

As you type speed Relevance Developer
Experience

Algolia

C O N F I D E N T I A L

7

Algolia

300+
employees

200B+
API calls / month

16
regions

70+
datacenters

100+
Countries

C O N F I D E N T I A L

We’re hiring!
algolia.com/careers

A bit of theory

Views

MatViews

MatViews

─ Added in 9.3 (2013)

─ Results are persisted

─ On-demand update

─ Behaves like a table
─ Indices creation

─ Key constraints

─ Maintenance operations

─ Supports Joins

Show me the code!

createas.c

/* This code supports both CREATE TABLE AS and CREATE MATERIALIZED VIEW */
 is_matview = (into->viewQuery != NULL);

 relkind = is_matview ? RELKIND_MATVIEW : RELKIND_RELATION;

…

/* Create the "view" part of a materialized view. */

 if (is_matview)

 {

 /* StoreViewQuery scribbles on tree, so make a copy */

 Query *query = (Query *) copyObject(into->viewQuery);

 StoreViewQuery(intoRelationAddr.objectId, query, false);

 CommandCounterIncrement();

 }

src/backend/commands/createas.c

Example of use cases

─ Cache slow query results

─ Cache foreign data wrapper results

─ No data freshness constraint

─ Let the data engineers mess up the source table(s) with [no] consequence

Concrete Use case

JobTeaser

Current situation

- 50 millions rows

- Refreshed once a day

- 2 aggregation levels

- Painfully slow (~ 5min)

Table schema Pain points

GroupAggregate (cost=12117964.73..12662692.48 rows=161615 width=28) (actual
time=203293.527..294512.778 rows=1515142 loops=1)
Group Key: fom.job_offer_id
Buffers: shared hit=7956 read=1247936, temp read=999414 written=999414

-> Sort (cost=12117964.73..12253742.63 rows=54311160 width=24) (actual
time=203293.371..222702.438 rows=53529386 loops=1)

Sort Key: fom.job_offer_id
Sort Method: external merge Disk: 1825640kB
Buffers: shared hit=7948 read=1247936, temp read=999414 written=999414
-> Seq Scan on agg.fresh_offer_metrics fom (cost=0.00..1798992.60

rows=54311160 width=24) (actual time=0.667..118503.122 rows=53529386 loops=1)
Buffers: shared hit=7945 read=1247936

Planning time: 0.920 ms
Execution time: 295166.518 ms

Query plan

Aggregated table and upsert strategy

First “brilliant” idea

─ 2 aggregates tables : 1 per aggregation level

─ Leverage real time data by refreshing every 2h

─ Upsert: DELETE + INSERT in a transaction

Aggregated tables + Upsert strategy

Aggregated tables + Upsert strategy

Upsert Strategy

Which leads to locks

… poor execution

Second idea

Same, but with MatViews

Easy as CREATE TABLE AS

CREATE MATERIALIZED VIEW IF NOT EXISTS
job_offer_views_mv AS

SELECT job_offer_id

 , COUNT(*) AS view_count

 , COUNT(distinct session_id) AS unique_view_count

FROM views

GROUP BY job_offer_id;

GroupAggregate (cost=12117964.73..12662692.48 rows=161615 width=28) (actual
time=203293.527..294512.778 rows=1515142 loops=1)
Group Key: fom.job_offer_id
Buffers: shared hit=7956 read=1247936, temp read=999414 written=999414

-> Sort (cost=12117964.73..12253742.63 rows=54311160 width=24) (actual
time=203293.371..222702.438 rows=53529386 loops=1)

Sort Key: fom.job_offer_id
Sort Method: external merge Disk: 1825640kB
Buffers: shared hit=7948 read=1247936, temp read=999414 written=999414
-> Seq Scan on agg.fresh_offer_metrics fom (cost=0.00..1798992.60

rows=54311160 width=24) (actual time=0.667..118503.122 rows=53529386 loops=1)
Buffers: shared hit=7945 read=1247936

Planning time: 0.920 ms
Execution time: 295166.518 ms

Query plan: without MatView

QUERY PLAN

Index Scan using fomv_uq_jo_id on agg.fresh_offer_metrics_view (cost=0.43..8.45

rows=1 width=20) (actual time=1.045..1.045 rows=0 loops=1)

Index Cond: (fresh_offer_metrics_view.job_offer_id = 150)

Buffers: shared hit=2 read=1

Planning time: 0.182 ms

Execution time: 1.066 ms

Query plan: with MatView

REFRESH MATERIALIZED VIEW job_offer_views_mv;

Locks ! Locks Everywhere

It’s all in the code!

/*

* ExecRefreshMatView -- execute a REFRESH MATERIALIZED VIEW command

*

* This refreshes the materialized view by creating a new table and swapping
* the relfilenodes of the new table and the old materialized view, so the OID
* of the original materialized view is preserved. Thus we do not lose GRANT

* nor references to this materialized view.

…

* Indexes are rebuilt too, via REINDEX. Since we are effectively bulk-loading
* the new heap, it's better to create the indexes afterwards than to fill them

* incrementally while we load.

…

* /

 /* Determine strength of lock needed. */

 concurrent = stmt-> concurrent;

 lockmode = concurrent ? ExclusiveLock : AccessExclusiveLock;
src/backend/commands/matview.c

REFRESH CONCURRENTLY

- Allows concurrent selects statements

- Requires at least one unique index

- Can be faster or slower than simple REFRESH

The magic of CONCURRENTLY

It’s all in the code!

if (concurrent)

 …

 refresh_by_match_merge(matviewOid, OIDNewHeap, relowner, save_sec_context);
 else

 refresh_by_heap_swap (matviewOid, OIDNewHeap, relpersistence);

...

/*

* Refresh a materialized view with transactional semantics, while allowing concurrent reads.

* ...

* It performs a full outer join against the old version of

* the data, producing "diff" results. This join cannot work if there are any

* duplicated rows in either the old or new versions, in the sense that every

* column would compare as equal between the two rows.

* …

* Once we have the diff table, we perform set-based DELETE and INSERT

* operations against the materialized view, and discard both temporary

* tables.

src/backend/commands/matview.c

The magic behind CONCURRENTLY

- Carefully read the doc

- Read the code when in doubt, it’s easy!

Retro

Wrap-up

- MatViews can replace tables by caching slow queries results

- They’re not refreshed automatically

- Be careful with refresh strategy you choose

- REFRESH requires ACCESS EXCLUSIVE LOCK and replaces the underlying table

- REFRESH CONCURRENTLY requires a UNIQUE INDEX and proceeds by a diff

Pro tip: Use pg_cron extension to refresh the view
SELECT cron.schedule('0 10 * * *', 'REFRESH MATERIALIZED VIEW CONCURRENTLY ...');
SELECT cron.unschedule(43);

Sum-Up

Thanks

Stephanie Baltus - Sr software engineer
@steph_baltus honest.engineering

